Water Management Optimization Problems

Basic Concepts of Linear Programming.
Application of Classic Optimization Tasks in Water Resources
Management

Assoc. Prof. Petar Filkov
University of Architecture, Civil Engineering and Geodesy - Sofia

Sofia winter School 29 November - 10 December 2021
Date: 2 December - Lecture 7.

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

University of Nis

1. Optimization

- Optimization is an activity, which has an aim to determine the best possible solution, at a given criterion and under given circumstances (conditions)
- The best possible solution is the optimal solution or optimum
- The criterion is called Objective Function (OF) - a mathematical expression which shows if the optimum is achieved
$>$ According to the meaning of the OF the optimum is an extremum of the function - it is either minimum, or maximum of OF.
- The circumstances or conditions under which the optimum is found are called constraints.
- Thus, optimization means finding the minimum or maximum of the OF under given set of constraints.

1. Optimization

- Mathematical point of view
$>$ Optimization can be done in each case, when the number of unknown variables \boldsymbol{n} is greater than the number of equations (or inequalities) \boldsymbol{m} which set interrelation between n variables.
- For example, let's have:
$>n$ - number of variables;
$>m$ - number of equations, which link these n variables.
$>$ When $n<m$, then there is no solution, or only one solution
$>$ When $n=m$, then there is only one possible solution
\checkmark We cannot say if the solution is good or bad - it is only one
$>$ When $n>m$, then there are infinite number of solutions
\checkmark In that case we may look for the best solution, according to some criteria

1. Optimization

- When $n>m$, then:
$>$ The equations (or inequalities) which set the interrelation between variables are the constraints.
$>$ In order to find the best possible solution, i.e. optimum solution, we have to specify the OF
$>$ The OF has to be the function of the variables.
$>$ There are three kinds of variables:
\checkmark decision variables (non-basic) variables - their number is $\boldsymbol{k}=\boldsymbol{n} \boldsymbol{- \boldsymbol { m }}$
\checkmark basic variables - their number is m
- These are the variables which can be expressed as function of decision variables by means of the available m equations or inequalities.
\checkmark slack variables - additionally introduced variables, which have the aim to convert inequalities to equations
- e.g. inequality $a \cdot X_{1}+b \cdot X_{2} \leq D$ turns to: $a \cdot X_{1}+b \cdot X_{2}-\mathrm{t}_{1}=D$, as $t_{1} \geq 0$

1. Optimization

- The optimization problem is defined as:

Find the min/max of the $O F$

$$
Z=f\left(X_{i}\right),
$$

subject to:

$$
\sum_{i} a_{i j} X_{i}{ }^{\leq} b_{j}
$$

where $a_{i j}$ are the multiplication coefficient of $i^{\text {th }}$ variable in $j^{- \text {th }}$ constraint.

$$
b_{j}-\text { is the } j^{\text {th }} \text { constraint value }
$$

- When all equations (and inequalities) are linear in respect to variables X_{i}, and also the $O F$ is a linear function of variables X_{i}, then we speak about linear optimization or linear programming

1. Optimization

- The following requirements have to be fulfilled, in order to have optimization problem:
$>$ Subject to optimization
\checkmark In Water Resources Management (WRM) this is Water Management System (WMS) - water supply, irrigation or hydro-power system
$>$ Manageability of the subject
\checkmark In WRM the WMS, as well as the river runoff are manageable
$>$ Optimization criteria
\checkmark This is the Objective Function
$>$ Optimization method
\checkmark There are different methods - analytical, numerical, graphical or experimental
- the analytical and experimental methods are not suitable for WRM

1. Optimization

- The following types of optimizations are present:
$>$ Static optimization - when the system subject to optimization is considered (and analyzed) in a static (steady) state.
$>$ Dynamic optimization (Dynamic Programming)
\checkmark when (some of) variables in the OF are time-dependant, i.e. they change over time, or
\checkmark when it is necessary to analyze the systems in several steady states over time.
$>$ Linear optimization (Linear Programming - LP) - when all constraints and the OF are in linear relation with variables
$>$ Non-linear optimization (Non-linear Programming) - when some or all of the constraints and/or OF are in non-linear relation with variables.

1. Optimization

- Water Resources Management is actually an optimization problem
The water resources management aims determination of the optimal use of water resources, in accordance with assumed optimization criterion, under set of constraints
> Subject to optimizations are water management systems
> Constraints are different limitations regarding the size of the systems, the availability of water resources, etc.
> Optimization criterion can be economic, technical and economic, etc.
> Use of water resources has to be determined.

2. Linear Programming (LP)

- The optimization problem is defined as:

For the OF: $Z=C_{0}+C_{1} X_{1}+C_{2} X_{2}+\ldots+C_{\mathrm{n}} X_{\mathrm{n}}$ find min (or max), Subject to (constraints):

$$
\left\lvert\, \begin{aligned}
& a_{11} X_{1}+a_{12} X_{2}+\ldots+a_{1 n} X_{n} \geq b_{1} \\
& a_{21} X_{1}+a_{22} X_{2}+\ldots+a_{2 n} X_{n} \leq b_{2} \\
& \ldots \\
& a_{m 1} X_{1}+a_{m 2} X_{2}+\ldots+a_{m, n} X_{n} \geq b_{m}
\end{aligned}\right.
$$

There are additional constraints in lots of problems - all variables should be non-negative

$$
X_{i} \geq 0
$$

- In Linear Programming the $\mathrm{min} / \mathrm{max}$ of the OF is conditional!
$>$ it depends of the constraints!

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
- When the number of decision variables is $k=2$, then the solution can be presented in a 2-dimensional space, i.e. in a plane.
$>$ Let $k=n-m=2$, and the decision variables are X_{1} and X_{2}.
$>$ Then all m basic variables can be expressed as function of decision variables X_{1} and X_{2}.

$$
\left\lvert\, \begin{aligned}
& X_{3}=\alpha_{31} X_{1}+\alpha_{32} X_{2}+\beta_{3} \\
& X_{4}=\alpha_{41} X_{1}+\alpha_{42} X_{2}+\beta_{4} \\
& \cdots \\
& X_{m}=\alpha_{m 1} X_{1}+\alpha_{m 2} X_{2}+\beta_{m}
\end{aligned}\right.
$$

$>$ The OF is also expressed as function of X_{1} and X_{2} $Z=\gamma_{0}+\gamma_{1} X_{1}+\gamma_{2} X_{2}$

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
- For thar case, the equation of the OF is the equation of the plane in the coordinate system $X_{1} X_{2} Z$

$$
Z=\gamma_{0}+\gamma_{1} X_{1}+\gamma_{2} X_{2}
$$

> The position in space $X_{1} X_{2} Z$ depends on:
\checkmark the presence or absence and on the value of the coefficient γ_{0},
\checkmark the coefficients γ_{1} and γ_{2} which show the slopes towards the axes X_{1} and X_{2} - the bigger are the coefficients γ_{1} and γ_{2}, the steeper are the slopes.

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ The intersection between OF and the plane $X_{1} 0 \mathrm{Z}$ is a straight line $>$ Its equation is obtained when value of $X_{2}=0$ is substituted in OF
$>$ The intersection between OF and the plane $X_{2} 0 Z$ is a straight line $>$ Its equation is obtained by when value of $X_{1}=0$ is substituted in OF

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ If we consider only 2 D space, the OF can be presented in the plane $X_{1} 0 X_{2}$ similarly to terrain shape on a topographic (contour) map.

$>$ The constant values of OF can be presented as straight contours
\checkmark On the left picture above the thick line is intersection between OF plane and $X_{1} 0 X_{2}$ plane
$>$ The biggest slope of OF plane towards $X_{1} 0 X_{2}$ plane is in direction of a line n (see right picture above)

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ Each constraint actually represent the equation of a plane, which crosses the $X_{1} 0 X_{2}$ plane

$$
\left\lvert\, \begin{aligned}
& X_{3}=\alpha_{31} X_{1}+\alpha_{32} X_{2}+\beta_{3} \\
& X_{4}=\alpha_{41} X_{1}+\alpha_{42} X_{2}+\beta_{4} \\
& \cdots \\
& X_{m}=\alpha_{m 1} X_{1}+\alpha_{m 2} X_{2}+\beta_{m}
\end{aligned}\right.
$$

$>$ If the constraint is of type equation, by substituting any basic variable $X_{i}=0$, we will get as result the equation of a line in $X_{1} 0 X_{2}$ plane.
\checkmark All the points along the line are points, which mark feasible solution

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ If the constraint is of type inequality, by substituting any basic variable $X_{i}=0$, and if we assume that this is equation, we will get as a result the equation of the line in $X_{1} 0 X_{2}$ plane.
\checkmark Because of the inequality, this line splits $X_{1} 0 X_{2}$ plane in tow halfplanes - one is an area with feasible solutions, and the other one with non-feasible solutions

\checkmark All constraints create an area in the plane $X_{1} 0 X_{2}$
\checkmark If all the constraints are equations, then along all lines we have points, which show feasible solutions.
\checkmark If all the constraints are inequalities, then the region, which satisfies all inequalities is so-called feasible region, or feasible set.

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ Sometimes, because of number and type of inequalities, the feasible region may not be a compact figure, but it may consist a part of the plane $X_{1} 0 X_{2}$.

\gg It that case it is said that the region is unbounded
$>$ If feasible region is unbounded, it is important to have the borders of this region facing the origin of the coordinate system $X_{1} 0 X_{2}$, if we look for minimum of the OF.
\checkmark This also means that the origin of the coordinate system is outside of the feasible region

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ If we look for maximum of the OF, it is important to have the feasible region restricted from Northeast, i.e. the origin of the coordinate system $X_{1} 0 X_{2}$ to be in the feasible solution region.

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ If the problem is presented in 3D space, then the following picture can be drawn

\checkmark If the corners of the feasible region are projected towards the plane of the OF, we will get a polygon shape.

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ It is seen that the maximum or minimum of the OF is found at one of the polygon corners in the plane of the OF

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ In case of a 2D representation of the problem, all lines are drawn in the plane $X_{1} 0 X_{2}$.
$>$ The OF is presented also with lines - projection of equipotential lines of the OF over the plane $X_{1} 0 X_{2}$.

\checkmark The extremum (min or max) can be found if we move the line of the OF at value $Z=0$ (this is intersection between plane $X_{1} 0 X_{2}$ and the plane of the OF) in normal direction towards the feasible region.
\checkmark The minimum or maximum always will be at some of the corners of the feasible region.

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
$>$ The shape of the feasible region can be changed, if one or more of the constrains are changed
$>$ Then the maximum or minimum is changed, due to change of the position of corners of the feasible region in the plane $X_{1} 0 X_{2}$.

$>$ This is the reason why it is said that the minimum or the maximum of the OF in Linear Programming is conditional
\checkmark The solution will vary as the constraints (limiting conditions) change - then the corners of the feasible solution region also change

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
> Conclusions:

1. The OF extremum is always found at the borders on the feasible region (FR) - and it is always at some of the corners.
2. The optimum is found at that corner in which the OF does not cross the feasible region
3. At each corner of the feasible region the so-called basic feasible solution is found

4. When we look for the optimum solution it is sufficient to find all corners of the feasible region (especially if FR it is bounded)

2. Linear Programming (LP)

- Graphical Interpretation of LP Problems
> Conclusions:

5. The OF is at a corner of FR when the number of variables equal to zero is equal to the number of the decision variables k.
6. When the line of OF at $Z=0$ (the intersection between the plane of OF and the plane $X_{1} 0 X_{2}$) is parallel to one of the borders of FR, this means that there is no single optimal solution.

7. It is possible to have feasible region, but not to find the optimum solution
$>$ In that case, either the constraint which is parallel to OF, or the OF have to be redefined.

2. Linear Programming (LP)

- There are 3 major types of LP problems
> Transportation Problem
\checkmark formulated in 1941 by L. Kantorovich (USSR) and F.L. Hitchcock (USA) independently one form another
\checkmark During the WWII the transportation costs have to be minimized
$>$ Diet Problem or Nutrition Problem
\checkmark also known as Mixing or Blending Problem
\checkmark formulated in 1945 by G. Stigler (Great Britain)
$>$ (Resource) Allocation Problem
\checkmark also known as Assignment Problem
\checkmark formulated in 1947 G.B. Dantzig (USA)
$>$ Only Allocation and Transportation Problems are discussed
\checkmark They have application in Water Resources Management

3. Allocation Problem

- The Allocation problem can be formulated using the following example
$>$ An agricultural farm has an area of $F=50$ ha
$>$ Farmer is going to grow two crops $-X_{1}$ and X_{2}.
\checkmark The profit from crop X_{1} (e.g. Maize) is $300 € /$ ha
\checkmark The profit from crop X_{2} (e.g. Sunflower) is $200 € /$ ha
$>$ The fertilizers needed to obtain these profits are:
\checkmark for $\operatorname{crop} X_{1}$ (e.g. Maize) $-500 \mathrm{~kg} / \mathrm{ha}$
\checkmark for crop X_{2} (e.g. Sunflower) - $250 \mathrm{~kg} / \mathrm{ha}$
$>$ According to National requirements the average fertilizer rate per hectare cannot exceed $400 \mathrm{~kg} / \mathrm{ha}$, i.e. for an area of $F=50$ ha the total amount of fertilizers for the farm is $50.400=20000 \mathrm{~kg} / \mathrm{year}$.
$>$ Find areas X_{1} and X_{2} so to maximize farmer's profit.

3. Allocation Problem

- Mathematical formulation:
$>$ OF: $Z=300 X_{1}+200 X_{2} \rightarrow \max$
$>$ Constraints:
$\checkmark X_{1}+X_{2} \leq 50$ (area constraint)
$\checkmark 500 X_{1}+250 X_{2} \leq 20000$ (fertilizer constraint)
$>$ The second constrain maybe reduced to:
$\checkmark 2 X_{1}+X_{2} \leq 80$ (fertilizer constraint)
$>$ Note that the problem is in so-called canonical form
\checkmark The canonical form is found when the maximum of OF has to be obtained and all constraints are of type "less or equal"
\checkmark Also, canonical form is present in case when the minimum of OF has to be obtained and all constraints are of type "greater or equal"

3. Allocation Problem

- Graphical Solution:
$>$ At first, the two constraints are presented as equations

$$
\begin{aligned}
X_{1}+X_{2} & =50(\text { area constraint }) \\
2 X_{1}+X_{2} & =80(\text { fertilizer constraint })
\end{aligned}
$$

$>$ The equations represent lines in plane $X_{1} 0 X_{2}$
$>$ They can be drawn if two points of each line are found.
$>$ We can substitute consecutively $X_{1}=0$ and then $X_{2}=0$, to find these points

3. Allocation Problem

- Graphical Solution:
$>$ Second, because the constraints are actually inequalities, the half-planes containing feasible solutions have to be determined

$$
\begin{gathered}
X_{1}+X_{2} \leq 50 \text { (area constraint) } \\
2 X_{1}+X_{2} \leq 80 \text { (fertilizer constraint) }
\end{gathered}
$$

\checkmark As it is seen from the inequalities of the two constraints, the origin of the coordinate system $X_{1} 0 X_{2}$ (point 0,0) is in the half-plane which satisfies these inequalities, thus the origin $(0,0)$ shows the feasible half-plane.
$>$ Feasible region is found

3. Allocation Problem

- Graphical Solution:
$>$ The line of the OF is drawn
$>$ The equation is

$$
Z=300 X_{1}+200 X_{2}
$$

$>$ If $Z=0$, then the intersection line between the plane $X_{1} 0 X_{2}$ and the plane of the OF is found
$>$ Obviously, when $Z=0$, the line of the OF intersects the origin 0,0 .
$>$ The position of OF line in the plane $X_{1} 0 X_{2}$ is found by rearranging the equation $300 X_{1}+200 X_{2}=0$

$$
\frac{X_{2}}{X_{1}}=-\frac{300}{200}
$$

3. Allocation Problem

- Graphical Solution:
$>$ It is known that:

$$
\operatorname{tg} \alpha=\frac{X_{2}}{X_{1}}
$$

where α is the angle between the axis X_{1} and the line of the OF
$>$ Thus we obtain:

$$
\begin{aligned}
& \operatorname{tg} \alpha=\frac{X_{2}}{X_{1}}=-\frac{300}{200}=-1,5 \\
& \text { or } \alpha=-56,31^{\circ}
\end{aligned}
$$

$>$ The position of the OF line when $Z=0$ is found (see figure)

3. Allocation Problem

- Graphical Solution:
$>$ The optimal solution is found by translating the OF line in normal direction till it intersects that corner at which the line do not crosses the feasible region.
\checkmark For the current example, this is the point (30,20)
$>$ Replacing $X_{1}=30$ and $X_{2}=10$ in the OF equation, we find:
$>Z_{\max }=300.30+200.20=13000 €$.
$\boldsymbol{N} . \boldsymbol{B}$. One can try to estimate the OF value for any other point in the feasible region to see if the result is correct

3. Allocation Problem

- Allocation problem in Water Resources Management
- Example
$>$ A reservoir is planned with a live storage $V_{\text {live }}=20 \mathrm{mil} . \mathrm{m}^{3}$.
$>$ The reservoir can supply water for an Irrigation system and an Industrial complex, which will contribute to National Economy:
\checkmark profit $0,1 € / \mathrm{m}^{3}$ from the Irrigation system;
\checkmark profit $0,3 € / \mathrm{m}^{3}$ from the Industrial complex.
$>$ The energy consumption for delivery the water to users is:
\checkmark to Irrigation System $-0,05 \mathrm{kWh} / \mathrm{m}^{3}$.
\checkmark to Industrial complex $-0,20 \mathrm{kWh} / \mathrm{m}^{3}$.
$>$ The available energy for the Irrigation System and Industrial complex is estimated to $2,4 \mathrm{mil}$. kWh .
$>$ Find volumes of water to be supplied to two users.

4. Transportation Problem

- Definition of Transportation Problem
$>$ There are number of r producers A_{i} and number of s stores B_{j}.
$>$ Each producer A_{i} has it own capacity W_{i}^{A} to supply given product to stores.
$>$ Each store A_{i} has its own capacity W_{j}^{B} to receive the products.
$>$ The transported number of products from producer A_{i} to store B_{j} is $X_{i j}$.
$>$ The unit cost for transportation from producer A_{i} to store B_{j} is $C_{i j}$.
N.B. It is assumed that all products will be sold from stores B_{j}.

4. Transportation Problem

- Definition of Transportation Problem
$>$ The task is to find the minimum cost for transportation from producers A_{i} to stores B_{j}, i.e.
$>$ the $\mathbf{O F}$ is:
$Z=X_{11} C_{11}+X_{12} C_{12}+X_{1 s} C_{1 s}+\ldots+X_{21} C_{21}+X_{22} C_{22}+\ldots+X_{r 1} C_{r 1}+\ldots+X_{r s} C_{r s}$,
or
$Z=\sum_{i} \sum_{j} X_{i j} C_{i j}$, where $i=1 \div r ; j=1 \div s$.
$>$ Subject to constraints:
$\sum_{j} X_{i j} \leq W_{i}^{A}$ - the capacity of each producer should not be exceeded $\sum_{i} X_{i j} \leq W_{j}^{B}$ - the capacity of each store should not be exceeded
N.B. It is typical for the problem to have constraints as equations, not as inequalities

4. Transportation Problem

- Types of Transportation Problem
$>$ The problem is balanced
\checkmark When the total production (supply) is equal to total demand:

$$
\sum_{1} w_{1}^{\prime}=\sum_{1} w_{i}^{p}
$$

$>$ The problem is unbalanced
\checkmark When the total production (supply) is not equal to total demand
\checkmark It is possible to have a Surplus or

$$
\sum_{i} W_{i}^{A}>\sum_{j} W_{j}^{B}
$$

\checkmark to have a Deficit:

$$
\sum_{i} W_{i}^{A}<\sum_{j} W_{j}^{B}
$$

4. Transportation Problem

- Types of Transportation Problem
$>$ It is difficult, if not impossible to solve unbalanced problem
$>$ To make the problem balanced, it is introduced:
\checkmark A dummy store (or dump), in case of a surplus
- The capacity of a dummy store is $W_{s+1}^{B}=\sum_{i} W_{i}^{A}-\sum_{j} W_{j}^{B}$
\checkmark A dummy producer, in case of a deficit
- The capacity of a dummy producer is $W_{r+1}^{A}=\sum_{j} W_{j}^{B}-\sum_{i} W_{i}^{A}$
\checkmark In general, the case of deficit is not typical for Transportation problem.
$>$ The unit costs for transportation to dummy store $C_{i, s+1}$ or from dummy producer $C_{r+1, j}$ is assumed enormously high, compared to other unit costs.

4. Transportation Problem

- Objective Function
$>$ The OF $Z=\sum_{i} \sum_{j} X_{i j} C_{i j}$
is actually a product of two matrices:
Matrix of Quantities
and
Matrix of Unit Costs

	B_{1}	B_{2}	\ldots	B_{j}	\ldots	B_{s}
A_{1}	X_{11}	X_{12}		$X_{1 \mathrm{i}}$		$X_{1 \mathrm{~s}}$
A_{2}	X_{21}	X_{22}		$X_{2 j}$		$X_{2 s}$
\ldots						
A_{i}	$X_{i 1}$	$X_{i 2}$		$X_{i j}$		$X_{i s}$
\ldots						
A_{r}	$X_{r 1}$	$X_{r 2}$		$X_{r j}$		$X_{r s}$

	B_{1}	B_{2}	\ldots	B_{j}	\ldots	B_{s}
A_{1}	C_{11}	C_{12}		$C_{1 \mathrm{i}}$		$C_{1 s}$
A_{2}	C_{21}	C_{22}		$C_{2 j}$		$C_{2 s}$
\ldots						
A_{i}	$C_{i 1}$	$C_{i 2}$		$C_{i j}$		$C_{i s}$
\ldots						
A_{r}	$C_{r 1}$	$C_{r 2}$		$C_{r j}$		$C_{r s}$

\checkmark Usually the Unit Costs are constants, regardless of the quantities transported.

4. Transportation Problem

- The constraints
$>$ The constraints have to be converted to equations, if such exist
$>$ Constraints, regarding production (supply) will be

$$
\left\lvert\, \begin{aligned}
& X_{11}+X_{12}+\ldots+X_{1 s}=W_{1}^{A} \\
& X_{21}+X_{22}+\ldots+X_{2 s}=W_{2}^{A} \\
& \cdots \\
& X_{r 1}+X_{r 2}+\ldots+X_{r s}=W_{r}^{A}
\end{aligned}\right.
$$

$>$ Constraints, regarding stores (demand) will be:

$$
\left\lvert\, \begin{aligned}
& X_{11}+X_{21}+\ldots+X_{r 1}=W_{1}^{B} \\
& X_{12}+X_{22}+\ldots+X_{r 2}=W_{2}^{B} \\
& \ldots \\
& X_{1 s}+X_{2 s}+\ldots+X_{r s}=W_{s}^{B}
\end{aligned}\right.
$$

$>$ It is understandable, without saying that $X_{i j} \geq 0$.

4. Transportation Problem

- Variables
$>$ The number of constraints: $m=r+s-1$
\checkmark It is "minus 1 ", because one of the constraints is dependable, due to equality $\sum_{i} W_{i}^{A}=\sum_{j} W_{j}^{B}$
$>$ Variables: $n=r \times s$
\checkmark If not all constraints are equations and the number of inequalities is t, then the number of slack variables will be t. In that case, the number of variables will be $n=r \times s+t$
> Basic variables: m
$>$ Decision variables: $k=n-m=r \times s-(r+s-1)=r(s-1)-(s-1)$

$$
k=(r-1)(s-1)
$$

$>$ Usually the number k is too big, or at least bigger than 2, to solve the Transportation problem graphically

4. Transportation Problem

- Solving the Transportation problem
- Example
$>$ There are 3 producers, capable to deliver the following production: $W_{1}^{A}=50, W_{2}^{A}=35, W_{3}^{A}=15$.
> There are 4 stores, with the following demands:

$$
W_{1}^{B}=25, W_{2}^{B}=30, W_{3}^{B}=20, W_{4}^{B}=25
$$

$>$ The minimum costs for transportation of production to the stores should be obtained. using the following unit costs:

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
$\boldsymbol{A}_{\mathbf{1}}$	2	1	4	2
$\boldsymbol{A}_{\mathbf{2}}$	4	5	2	3
$\boldsymbol{A}_{\mathbf{3}}$	3	2	3	2

The cost to transport production from producer A_{1} to store B_{1} is $2 € /$ unit
$>$ All the constraints are equations

4. Transportation Problem

- Example
$>$ The problem is balanced, since:

$$
\sum_{i} W_{i}^{A}=100 \text { and } \sum_{j} W_{j}^{B}=100
$$

$>$ Number of producers: $r=3$;
$>$ Number of stores: $s=4$.
$>$ Number of Variables: $n=r \times s=3 \times 4=12$.
$>$ Number of Constraints: $m=r+s-1=3+4-1=6$
$>$ Basic variables: $m=6$
$>$ Decision variables: $k=(r-1)(s-1)=(3-1)(4-1)=6$.

4. Transportation Problem

- Example
$>$ Finding the basic feasible solution
\checkmark According to the conclusion from the graphical interpretation of LP, when a basic feasible solution is found, then the number of variables, which are zero is equal to the number of decision variables.
\checkmark Thus, we have to assign value of zero to 6 variables - these are decision variables.
\checkmark The values of the basic variables (in this example also 6) will be found by means of satisfying the constraints (which are $m=6$).
$>$ Finding the basic feasible solution can be done by two methods:
\checkmark Northwest corner method
\checkmark Least Cost method

4. Transportation Problem

- Example
$>$ Finding the basic feasible solution by Northwest corner method \checkmark The following table is prepared:

Matrix of Quantities

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$	$\boldsymbol{W}^{\boldsymbol{A}}$
$\boldsymbol{A}_{\mathbf{1}}$	25	25	0	0	50
$\boldsymbol{A}_{\mathbf{2}}$	0	5	20	10	35
$\boldsymbol{A}_{\mathbf{3}}$	0	0	0	15	15
$\boldsymbol{W}^{\boldsymbol{B}}$	25	30	20	25	$100=100$

$>$ Filling the table:
\checkmark Starting from the top leftmost corner (Northwest corner) in the first cell the maximum possible quantity is assigned, which satisfies one of the constraints. In this example -25 satisfies the demand of store B_{1}.
\checkmark We move to cell $\mathrm{A}_{1} \mathrm{~B}_{2}$, because the capacity of producer A_{1} is not fulfilled. We assign 25 units to fulfill the capacity of producer A_{1}.

4. Transportation Problem

- Example
$>$ Finding the basic feasible solution by Northwest corner method Matrix of Quantities

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$	$\boldsymbol{W}^{\boldsymbol{A}}$
$\boldsymbol{A}_{\mathbf{1}}$	25	25	0	0	50
$\boldsymbol{A}_{\mathbf{2}}$	0	5	20	10	35
$\boldsymbol{A}_{\mathbf{3}}$	0	0	0	15	15
$\boldsymbol{W}^{\boldsymbol{B}}$	25	30	20	25	$100=100$

$>$ Filling the table:
\checkmark Next step is to move down to cell $\mathrm{A}_{2} \mathrm{~B}_{2}$ - the new Northwest corner. We assign 5 units in that cell to satisfy the demand of store B_{2}.
\checkmark Then we move right to cell $\mathrm{A}_{2} \mathrm{~B}_{3}$ and assign maximum possible quantity -20 , thus satisfying the demand of store B_{3}.
\checkmark The procedure continues until all the constraints are fulfilled.

4. Transportation Problem

- Example
$>$ Finding the basic feasible solution by Northwest corner method Matrix of Quantities

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$	$\boldsymbol{W}^{\boldsymbol{A}}$
$\boldsymbol{A}_{\mathbf{1}}$	25	25	0	0	50
$\boldsymbol{A}_{\mathbf{2}}$	0	5	20	10	35
$\boldsymbol{A}_{\mathbf{3}}$	0	0	0	15	15
$\boldsymbol{W}^{\boldsymbol{B}}$	25	30	20	25	$100=100$

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{4}}$
$\boldsymbol{A}_{\mathbf{1}}$	2	1	4	2
$\boldsymbol{A}_{\mathbf{2}}$	4	5	2	3
$\boldsymbol{A}_{\mathbf{3}}$	3	2	3	2

\checkmark It is seen from the left table above that we have exactly 6 cells containing values of zero - these are the decision variables.
$>\mathrm{OF}$ value estimation:
\checkmark Considering the Matrix of Quantities and the Matrix of Unit Costs:

$$
Z=\Sigma X_{i j} C_{i j}=25.2+25.1+5.5+20.2+10.3+15.2=160
$$

4. Transportation Problem

- Example
$>$ Improvement of basic feasible solution
\checkmark We select one basic variable and we make it a decision variable, and one of the decision variables becomes basic variable.
- This procedure is typical for the Simplex method for solving LP problems
\checkmark In the Transportation problem, we select 4 cells which form rectangle or mini-matrix
\checkmark A selection for the example is shown below

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$
$\boldsymbol{A}_{\mathbf{1}}$	25	25
$\boldsymbol{A}_{\mathbf{2}}$	0	5

- The cells may not be adjacent
- At least one value in the cells has to be zero
- It is possible to have zero values in two cells of that mini-matrix, but they should not be in one column or in one row

4. Transportation Problem

- Example
$>$ Improvement of basic feasible solution
\checkmark For the selected mini-matrix we switch as big quantity as possible between columns or between rows (an example is shown below).

- For the selected mini-matrix maximum possible transfer between columns is 5 units.
- This is how one variable becomes decision variable (it has value of 0) and a decision variable becomes basic (with value grater than zero)
\checkmark We have to check if that switch increases or decreases the OF value
- if it increases the OF, then the switch is cancelled
- if it decreases the OF, it is accepted

4. Transportation Problem

- Example
$>$ Improvement of basic feasible solution
\checkmark The change in value can be estimated as follows:

$$
\Delta Z=\Delta X .\left[\left(C_{12}+C_{21}\right)-\left(C_{11}+C_{22}\right)\right],
$$

where ΔX is the quantity switched (transferred)
C_{12} is the unit cost corresponding to the quantity delivered from the producer at the first row of this min-matrix to the store at the second column of the mini-matrix, etc.
\checkmark For the current example

$$
\Delta Z=\Delta X .\left[\left(C_{12}+C_{21}\right)-\left(C_{11}+C_{22}\right)\right]=5 \cdot[(1+4)-(2+5)]=-10 €
$$

b)

Matrix of Unit Costs

	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$
\boldsymbol{A}_{1}	2	1
$\boldsymbol{A}_{\mathbf{2}}$	4	5

4. Transportation Problem

- Example
$>$ Finding the optimal solution
\checkmark The switching of variables, i.e. the transfer of quantities from cell to cell in those mini-matrices is done in trial-and-error way
\checkmark When the number of variables is large, this approach can take significant time
\checkmark It is advisable to use some software
\checkmark The Microsoft Excel has a build-in tool for solving optimization problems - it is Solver
$\boldsymbol{N} . \boldsymbol{B}$. If the task has dummy producer or dummy store, then the final value of the OF is found by subtracting the costs for transportation of quantities from dummy producer or to dummy store.

4. Transportation Problem

- Transportation Problem in Water Resources Management
$>$ The Transportation problem can also be found in WRM
$>$ Typical example is the task for determination of water delivery from multiple sources to multiple users.
\checkmark If water sources are A_{i} and the water users are B_{j}, then the problem consists of finding the minimum cost for water delivery
$>$ This problem can be solved in two different cases:
\checkmark Project case - during preliminary research for design of water supply network or irrigation network
- Minimum investments in construction of the network is found
\checkmark Exploitation case - during exploitation stage of already existing networks, if there are canals/pipelines from each source to several (or all) water users
- Minimum expenses for water delivery in a given period of time is found

4. Transportation Problem

- Transportation Problem in Water Resources Management
$>$ The Transportation problem in WRM has its specifics
$>$ For the example of water delivery from multiple sources to multiple users.
\checkmark In both cases - project and exploitation - the unit costs are NOT constant.
\checkmark In project case - the canal/pipeline sizes depend on the design discharges - the bigger are the discharges, the higher are the costs
- But the relation Q-Cost is not linear!
\checkmark In exploitation case - the expenses for delivery depend on volumes the bigger are the volumes, the higher are the expenses.
- In case of delivery by open canals - the expenses are almost constant or in approximately linear relation to volumes
- In case of pressurized flow (by pumps) - the expenses are in nonlinear relation to volumes

4. Transportation Problem

- Transportation Problem in Water Resources Management
$>$ The Transportation problem in WRM can be solved using standard procedure, but taking into account the specifics
\checkmark The OF is changed: $Z=\sum_{i} \sum_{j} Z_{i j}$
where $Z_{i j}$ are the total costs or total expenses, estimated as function of discharges or volumes
\checkmark The functions $Z_{i j}-Q$ or $Z_{i j}-V$ have to be established
\checkmark These functions can be polynomial, e.g.:

$$
Z_{i j}=a_{0}+a_{1} V+a_{2} V^{2}+a_{3} V^{3}+a_{4} V^{4}, €
$$

More on solving Transportation problem in WRM is shown in task \# 2.

